This text investigates the distributions of functionals defined on the sample paths of stochastic processes. It contains systematic exposition and applications of three general research methods developed by the authors. The method of stratifications is used to study the problem of absolute continuity of distribution for different classes of functionals under very mild smoothness assumptions. It can be used also for evaluation of the distribution density of the functional. The method of differential operators is based on the ...
Read More
This text investigates the distributions of functionals defined on the sample paths of stochastic processes. It contains systematic exposition and applications of three general research methods developed by the authors. The method of stratifications is used to study the problem of absolute continuity of distribution for different classes of functionals under very mild smoothness assumptions. It can be used also for evaluation of the distribution density of the functional. The method of differential operators is based on the abstract formalism of differential calculus and proves to be a powerful tool for the investigation of the smoothness properties of the distributions. The superstructure method, which is a later modification of the method of stratifications, is used to derive strong limit theorems (in the variation metric) for the distributions of stochastic functionals under weak convergence of the processes. Various application examples concern the functionals of Gaussian, Poisson and diffusion processes as well as partial sum processes from the Donsker-Prohorov scheme.
Read Less
Add this copy of Local Properties of Distributions of Stochastic to cart. $154.35, new condition, Sold by paragonbooks rated 4.0 out of 5 stars, ships from Clinton Township, MI, UNITED STATES, published 1997 by American Mathematical Society(RI).